

City Sanitation Strategies:

Wastewater Management Planning in Japan

How City Sanitation has progressed

In-Country Workshop for Developing Sanitation Strategy Promoting Innovation Wastewater Management (ADB)

15-16 July 2013, Hanoi, Vietnam

Mitsuo Kitagawa

Japan Sanitation Consortium

CONTENTS; CITY SANITATION STRATEGY; The experience of Japan

I. BASIC FRAMEWORK for CSS

- I-1. Legal System for Sanitation Systems
- I-2. Technology Options for Drainage and Treatment of Wastewater
- I-3. Institutional and Management Arrangements
- I-4. Financial System for Sewerage Systems

II. NECESSARY CONSIDERATION for CSS

II-1. Project Planning

- II-1-1. Comprehensive Basin-wide Planning
- II-1-2. Concept of Cost Comparison between Off-site and On-site
- II-1-3. Prefectural Plan for Appropriate Wastewater Treatment
- II-1-4. Formulation of Project Plan
- II-1-5. Technology Options; Technology Evaluation and Design Manual

II-2. Operation and Maintenance

- II-2-1. Institutional and Management Arrangement s
 (Human Resource Development, Capacity Development, R&D)
- II-2-2. Financial System for Sanitation
 (Willingness To Pay, Public Awareness, Public Relation)
- **II-2-3.** Management of Sanitation Systems

III. CONCLUSION

Objectives of CSS; City Sanitation Strategy

- (1) Improvement of Living Condition
- (2) Improvement of Public Health
- (3) Preservation of Water Quality in Public Water Bodies

I. BASIC FRAMEWORK for CSS

(1) Legal System: Basic Law for Environmental Protection
Water Quality Control Law
City Planning Law
Sewerage Law, Johkasou Law

(2) Technology Options for Drainage and Treatment of Wastewater
Off site Treatment On site Treatment

Off-site Treatment, On-site Treatment

(3) Institutional and Management Arrangements
Role of Central Government and Municipality
Project Implementation Organization, JS: Japan Sewage Works Agency
Private Sector Participation, Public Private Partnership

(4) Finance System for Sanitation

Establishment of Construction and O&M Cost Sharing Principles

Construction Cost: Subsidy, Local Bond, User Charge

<u>O&M Cost</u> : User Charge, Public Sector Cost Burden

I-1. Legal System for Sanitation Systems

1. Basic Law for Environmental Protection

(1) Sets up the Environmental Quality Standards

Items on Protection of Human Health
Items on Conservation of living Environment
(Classified based on Water Usage)

(2) Stipulates to Take Countermeasures for Pollution Control

2. Water Pollution Control Law

(1) Sets the Effluent Wastewater Standards from Factories and Places of Business. (Specific Place of Business)

National Standards

(2) Prefecture Government Can Set Several Effluent Standards Wastewater Treatment plant; Specific Place of Business

I-1. Legal System for Sanitation Systems

3. City Planning law

Sewerage System is defined as Urban Facility

4. Sewerage Law

(1) Purpose of Sewerage

- Prevention of Flood
- Improving the Surrounding Environment
- Switching Flushing Toilet
- Prevention of Water Quality in Public Water Bodies

(2) Comprehensive Basin -wide Sewerage Development Program

- Basic Policy for the Development of Sewerage Systems
- Areas for the Development of Sewerage Systems
- Location, Structure and Capacity of Basic Sewerage Facilities
- Stage Planning for the Execution of Sewerage Construction Projects

JSC I-1. Legal System for Sanitation Systems

4. Sewerage Law

(3) Administration of Sewage works

The installation, improvement, repair, maintenance and other works required for controlling public sewerage shall be executed by the municipality concerned.

- Municipalities; in charge of Public sewerage
- Prefectures ; in charge of Regional sewerage system (More than 2 Cities)

(4) Procedures for Development of Sewerage Systems

 Approval of <u>Sewerage Project Program</u> by Ministry of Land Infrastructure and Transport

(5) Use of Sewer Systems

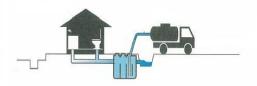
- Obligation for house Connection
- Switching to Flush Toilets
- Users Charge

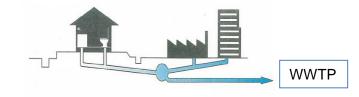
I-2.Technology Options for Drainage and Treatment of Wastewater

Off-site Treatment; Sewerage Systems (Night Soil Treatment in Japan)

On-site Treatment; Johkasou,

Table 1: Technology Options for Wastewater Treatment


	Type of	Population Rate (%)	Project Program Wastewat		ter	
	System	FY 2011	Froject Frogram	Human Waste	Gray Water	
Night Soil Treatment	Off-site	12.4	Night Soil Treatment Facility (MOE)	Vault Toilet Collection (Vacuum Truck) Night Soil Treatment Facility (Off-site)	Discharge Without Treatment	
	On-site		(Tandoku-shori Johkasou*)	Flush Toilet On-site Treatment	Discharge Without Treatment	
Wastewater	On-site	8.8	(Gappei-shori)	Flush Toilet	Gray Water	
Treatment			Johkasou (MOE)	On-site Treatment		
Wastewater	Off-site	78.8	Sewerage System	Flush Toilet	Gray Water	
Treated Population		75.8	Public Sewerage System (MLIT)	Collection (Sewer Network)		
Rate = 87.6 (8.8+78.8)		2.8 0.2	Rural Sewerage System (MAFF) Community Plant (MOE)	Wastewater Treatment Plant (Off-site		



Note: MLIT: Ministry Land Infrastructure and Transfer, MAFF: Ministry of Agriculture, Forestry and Fisheries

MOE: Ministry of Environment *new installations are legally prohibited

I-3. Institutional and Management Arrangement

Role of Central Government and Municipality

Table: Project Implementation Organizations

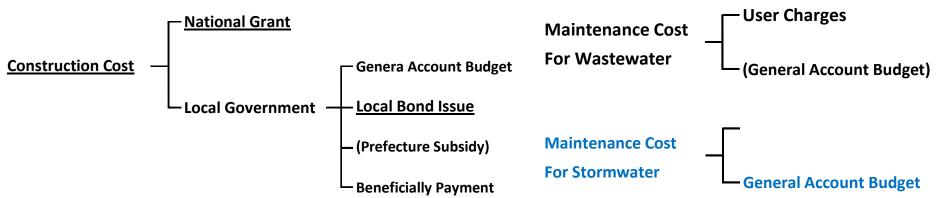
Type of System	Project Program	Project Implementation Organization
Off-site	Night Soil Treatment Facility (MOE)	Municipality
On-site	Johkasou (MOE)	Individuals or Municipality
Off-site	Sewerage System Public Sewerage System (MLIT) Rural Sewerage System (MAFF) Community Plant (MOE)	Municipality [JS: Japan Sewage Works Agency]

Note; Project Implementation (construction, O&M, and renewal)

The responsible Ministry in each program

Key and fundamental organization for

nationwide budget, establishment of technical standards, project evaluation, enactment of laws and regulations basic frameworks, and long and middle-term plans


I-4. Finance System for Sewerage Systems

<u>Table:</u> National Subsidy Ratio

C	Classification	Ratio of National Subsidy	Cost Sharing Ratio of Local Governments
Carrage Disease	Granted Project	1/2	1/2
Sewer Pipes	Unsubsidized Project		10/10
Wastewater	Granted Project	5.5/10	4.5/10
Treatment Plants	Unsubsidized Project		10/10

Note: All of the costs shared by local governments are covered by local bonds

Table: Financial Sources of Sewage Works

JSC Establishment of <u>Project Planning</u> and <u>O&M Concept</u> for City Sanitation(Drainage and Treatment of Wastewater)

II-1 Project Planning

II-1-1. Comprehensive Basin-wide Planning

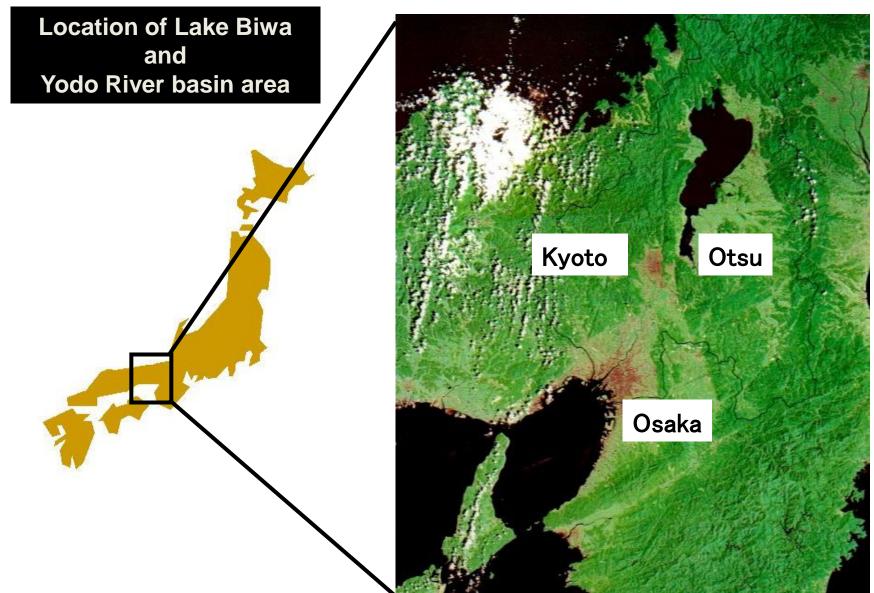
If rivers and other public water bodies or coastal areas, to which the 'environmental water quality standards' is applied to maintain a sound living environment in relation to water pollution as provided for in the Basic Environmental Law,

each prefecture shall set forth a comprehensive basic plan for the installation or development of sewerage systems ('comprehensive basin-wide planning of sewerage system') for the respective public water bodies or coastal areas

in order to bring the environmental conditions of the subject area to environmental water quality standards

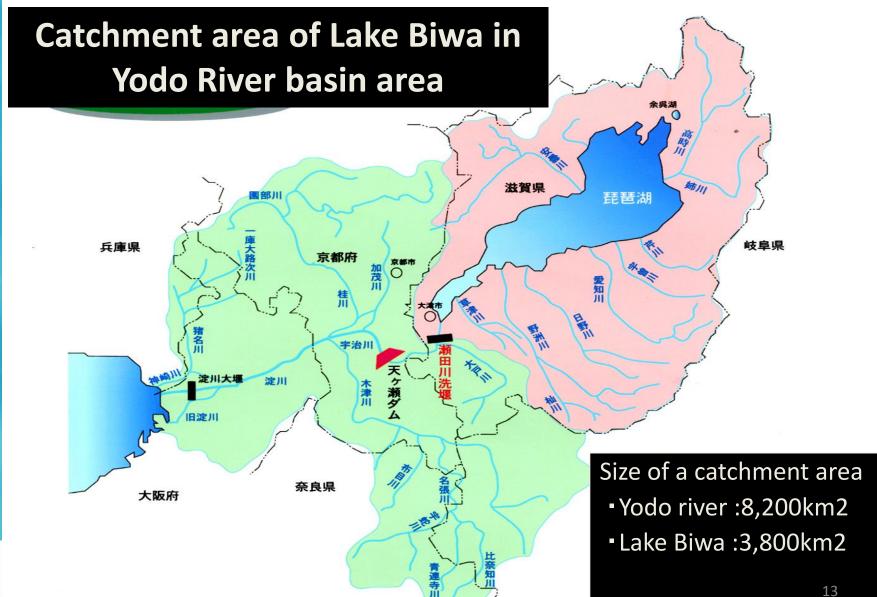
Environmental quality standards for conservation of the living environment

Lakes (natural lakes and artificial reservoirs with 10 million m³ of water or above)


Items	Standard values						
	pH Chemical		Suspended	Dissolved	Number of		
		Oxygen	Solids	Oxygen	coliform		
Categoly		Demand	(SS)	(DO)	groups		
AA	6.5-8.5	≦1mg/L	≦1mg/L	≧7.5mg/L	≦50MPN/100mL		
A	6.5-8.5	≦3mg/L	≦5mg/L	≧7.5mg/L	≦1,000MPN/100mL		
В	6.5-8.5	≦5mg/L	≦15mg/L	≧5mg/L			
С	6.0 -8.5	≦8mg/L	Floating matter	≧2mg/L			
			such as garbage				
			should not be				
			observed				

	Items	Standard values			
		Total	Total		
Categor	y Purpose of water use	Nitrogen	Phosphorus		
I	Conservation of natural environment	≦0.1mg/L	≦ 0.005		
			mg/L		
П	Water supply. Fishery type 1. Bathing	≦0.2 mg/L	≦0.01mg/L		
Ш	Water supply class 3 (special types)	≦0.4 mg/L	≦0.03mg/L		
IV	Fishery type 2	≦0.6 mg/L	≦0.05mg/L		
V	Fishery type 3. Industrial water.	≦1 mg/L	≦0.1mg/L		
	Agricultural water. Conservation of				
	the living environment				

- AA: Water supply, class 1; Fishery, class 1; Conservation of natural environment.
- A: Water supply, class 2 and 3; Fishery, class 2; Bathing.
- B : Fishery, class 3; Industrial water, class 1; Agricultural water.
- C : Industrial water, class 2;
 Conservation of environment.


II-1-1. Comprehensive Basin-wide Planning

II-1-1. Comprehensive Basin-wide Planning

II-1-1. Comprehensive Basin-wide Planning

To meet the Environment Standards, allocation of pollution load reduction in accordance with Pollution Source is necessary

Calculation and Allocation of Pollution Load in the River Basin

Present Pollutant Loads Allowable Pollutant Load **Domestic Wastewater** Measures Sewerage System **Domestic Wastewater On-site Systems** Industrial Wastewater Industrial Wastewater Regulation Live Stock Live Stock Treatment Facility Others Others Non Point Source Non Point Source

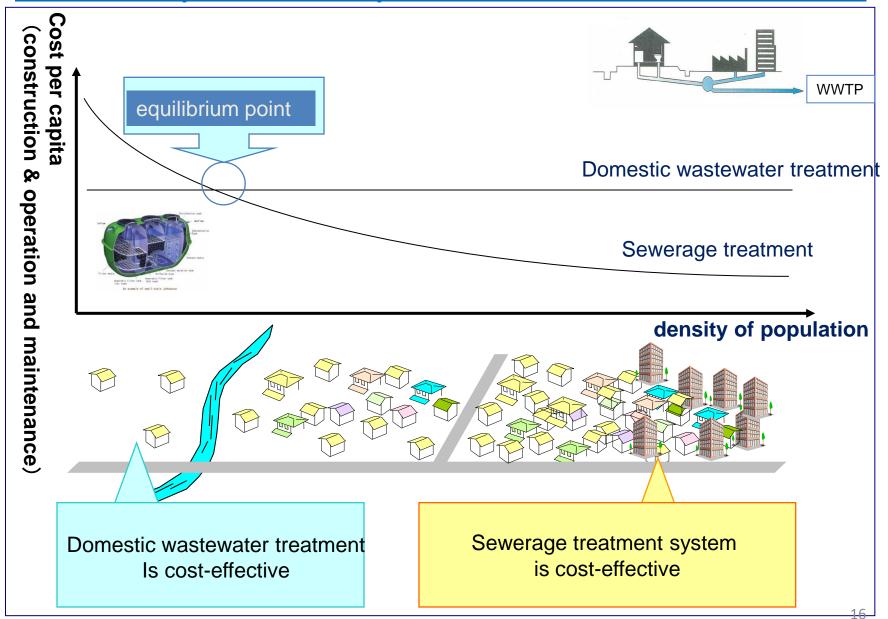
II-1-1. Comprehensive Basin-wide Planning

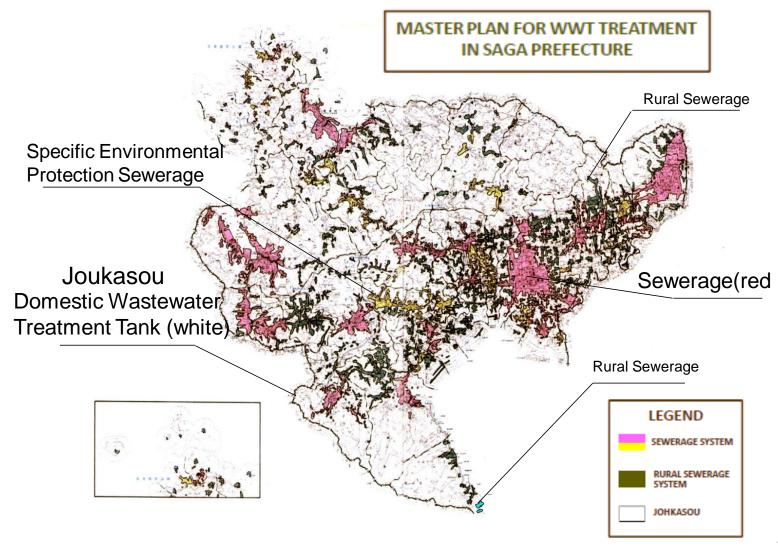
Planning for Drainage and Treatment of Domestic Wastewater to meet the Water Quality Standards

CONTENTS

Target Area, Coverage Area

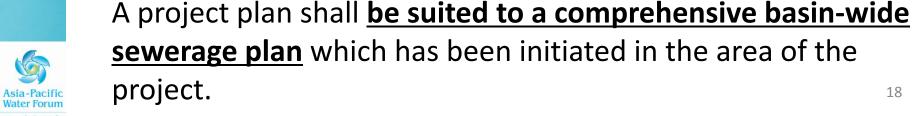
Area-wide Sewerage System (more than 2 cities)
Number and Location of WWTPs in Administrative Area
Main Pipe Route, Number and Location of Pumping Stations
On-site Treatment Area


- Wastewater Inflow Quantity and Quality
- Required Treated Water Quality and Treatment Processes



II-1-2. Concept of Cost Comparison between Off-site and On-site

II-1-3. Prefectural Plan for Appropriate Wastewater Treatment



II-1-4. Formulation of Project Plan

Sewerage Law (Article 4)

The official in charge of managing public sewerage systems (general manager of public sewerage systems) shall formulate a project plan, as specified by Cabinet Order, when he wishes to implement a public sewerage system.

The general manager of public sewerage systems shall confer with the prefectural governor (or the Minister of Land Infrastructure, Transport and Tourism in the case of a planning specified by Cabinet Order) when he formulates a project plan.

II-1-4. Formulation of Project Planning

Sewerage Law (Article 5)

Matters to be set forth in the Project Planning

In the project planning, each of the following matters shall be defined.

- 1. Layout, structure and capacity of the <u>sewer system</u> (including auxiliary facilities), and planned disposal areas.
- 2. Layout, structure and capacity of the <u>sewage treatment plant</u> of the location where it joins the regional sewerage system.
- 3. In installing treatment plants (including auxiliary facilities), other than the sewage treatment, layout, structure and capacity of such facilities shall be specified.
- 4. Scheduled date of initiating and completing the work

II. NECESSARY CONSIDERATION for CSS II-1-4. Formulation of Project Planning

Standard of Approval, Sewerage Law (Article 6)

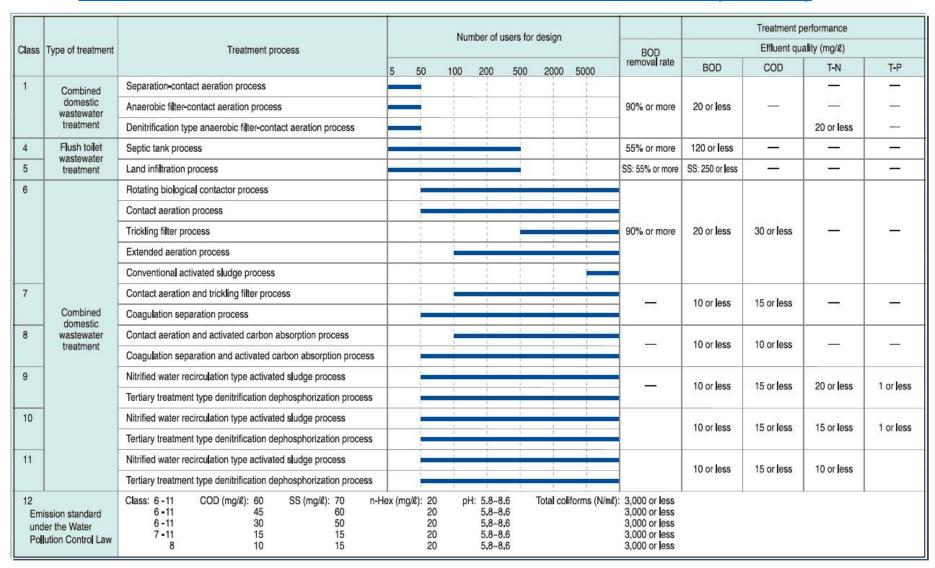
- 1. The location and capacity of the public sewerage system are properly set up in consideration of precipitation, population, and other factors that may influence the amount and the water quality (including water temperature and other conditions of water), of sewage in the area, topography, land utility and situations of the area where the effluent is to be discharged.
- 2. <u>The structure of the public sewerage system</u> meets the <u>technical</u> <u>standards</u> specified in the Sewerage Law.
- 3. The planned disposal area is suitable for the location and capacity of the sewer system and sewage treatment plant.
- 4. The working plan shall be suited to the comprehensive basin sewerage plan which has been initiated for the area.

II-1-5. Technology Options

Technical Standards for Wastewater Treatment Processes (Off-site)

Item	Planning Final Effluent Water Quality(mg/l)				Additional Treatment			
	BOD	T-N	T-P	Typical Wastewater Treatment Process	Rapid Filtration	Addition of Caogulant	Addition of Organic Mattter	
1			>0.5	Anaerobic-Anoxic-Oxic Process	0	0	0	
2		>10	0.5-1	Recycled Nitrification / Denitrification Process	0	0	0	
3		>10	1-3	Anaerobic-Anoxic-Oxic Process	0		0	
4			_	Recycled Nitrification / Denitrification Process	0		0	
5]	10 10-20	>1	Recycled Nitrification / Denitrification Process	0	0		
6] /10		1-3	Anaerobic-Anoxic-Oxic Process	0			
7				_	Recycled Nitrification / Denitrification Process	0		
8			>1	Anaerobic-Oxic Activated Sludge Process	0	0		
9		_	1-3	Anaerobic-Oxic Activated Sludge Process	0			
10		_		Conventional Activated Sludge Process	0			
11		``	>3	Anaerobic-Anoxic-Oxic Process				
12	10 15	>20		Recycled Nitrification / Denitrification Process				
13	10-15	_	>3	Anaerobic-Oxic Activated Sludge Process				
14		_		Conventional Activated Sludge Process				
	Same Level of Conventional Activated Sludge Process: OD, SBR, BAF, etc							

II-1-5. Technology Options


Based on the Technology Evaluation and Design and O&M Manual

Types of Wastewater Treatment Processes in Japan (in 2008)

Process	Maximum Daily Flow (× 1000?/day)						
	<	5 ~ 10	10~50	50~100	100~500	500<	Total
1. Secondary Treatment							
Activated Sludge Processes							
a) Conventional Activated Sludge Process	41	53	325	119	126	12	676
(Step Aeration Process)	0	0	1	2	2	0	5
b) Oxidation Ditch Process	804	93	33	0	0	0	930
c) Sequencing Batch Reactor	61	9	2	0	0	0	72
d) Extended Aeration Process	36	7	3	0	0	0	46
e) Pure Oxygen Activated Sludge Process	1	2	3	2	2	0	10
Fixed-film processes							
a) Aerobic Biofilter	24	5	0	0	0	0	29
(Biological Anaerobic-Aeroxic Filter)	42	2					44
b) Contact Aeration	12	0	1	0	0	0	13
c) Soil Covering-type Grabel Contactor	29	0	0	0	0	0	29
2. Advanced Treatment							
a) Recycled Nitrification/Denitrification Process	5	4	11	1	7	0	28
b) Nitrification/Endogenous Denitrification Process	1	0	1	0	0	0	2
c) Step-feed Multistage Nitrification/Denitrification Process	2	2	9	4	6	0	23
d) Anaerobic-oxic Activated Sludge Process	14	0	5	3	10	0	32
e) Anaerobic-anoxic-oxic Activated Sludge Process	0	4	7	9	15	1	36
f) Advanced Treatment Oxidation Ditch Process	47	10	0	0	0	0	57
3.Others							
a) Rotating Biological Contractor	10	6	1	1	0	0	18
b) High-rate Trickling Filter	0	2	2	0	0	0	4
(Trickling Filter)	0	0	0	1	0	0	1
c) Primary Treatment (Sedimentation)	1	0	1	0	0	0	2
d) Others	32	9	12	2	8	0	63
TOTAL	1,162	208	417	144	176	13	2,120

II-1-5. Technology Options

Technical Standards for Wastewater Treatment Processes (On-site)

Technology Evaluation and Design and O&M Manual

II-2. Operation and Maintenance

II-2-1 Institutional and Management Arrangements

- Role of Central Government and Municipality
- Project Implementation Organization (Project Responsible Organization)
- Private Sector Participation,
- Public Private Partnership (Share of Responsibilities, Risk management)
 (Service Contract, Managing Contract, Lease, Concession, Privatization, etc.)
- •Human Resource Development: On-the-Job Training, Training Program
- Capacity Development (JS Training Center)
- Research and Technology Development (JS R&D Division)
- Technical Support to Middle-Small Scale Municipalities

(JS: Japan Sewage Works Agency)

II-2-2 Financial System for Sanitation

Establishment of Construction and O&M Cost Sharing Principles

Construction Cost: Subsidy, Local Bond, User Charge

O&M Cost : <u>User Charge</u>, Public Sector Cost Burden

Collection of User Charge (Sustainability) greatly depends on User's Willingness To Pay, (Affordability to pay)

In respect of

- (1) The need for a water supply and sewerage system
- (2) Awareness and understanding of residents for paying for the facilities
- (3) A suitable payment system

II-2-2 Financial System for Sanitation

 Willingness to pay greatly depends on how citizens are aware of and evaluate the benefits of sanitation systems (Importance of Awareness and Understanding of Sanitation Systems Benefits)

1) Improvement of Surrounding Environments

Examples of benefits;

hygiene status, eradication of mesquites, flies,

People's comfort, use of flush toilet, elimination of odor problems, etc.

Reduction of Waterborne Diseases

2) Water Quality Preservation in Public Water Bodies

- (1) Improvement of the value of water environment for citizens
- (2) Cost reduction to uptake the water for drinking, industrial use, agricultural use, etc.
- (3) Damage cost of agriculture by discharging of untreated wastewater
- (4) Damage cost of fishery by discharging of untreated wastewater
- (5) Alternative method for dredging (without sewage works, dredging is required)

II-2-3 Management of Sewerage Systems

Necessary Aspects for Rational Management of Sewerage Systems

- Appropriate cost sharing between public and private financial resources
- Long-term basis forecast of income and expenditures considering the lifespan of the facilities and the increased percentage of users
- <u>Appropriate economic management</u> based on tangible business objectives, precise business analysis and future business prospects
- <u>Disclosure of management information to the citizens</u> as tax payers and users who bear user charge

Currently, <u>Kyoto City, Yokosuka City, and other cities</u> disclose management information including <u>Medium-range management planning</u>,

Balance of payment of sewage works, and

<u>PI (Performance Indicators)</u> proposed by the Japan Sewage Works Association.

Objectives of CSS; City Sanitation Strategy

- (1) Improvement of Living Condition
- (2) Improvement of Public Health
- (3) Preservation of Water Quality in Public Water Bodies

I. BASIC FRAMEWORK for CSS

(1) Legal System: Basic Law for Environmental Protection

Water Quality Control Law

City Planning Law

Sewerage Law, Johkasou Law

(2) Technology Options for Drainage and Treatment of Wastewater

Off-site Treatment, On-site Treatment

(3) Institutional and Management Arrangements

Role of Central Government and Municipality

Project Implementation Organization

Private Sector Participation, Public Private Partnership

(4) Financial System for Sanitation

Establishment of Construction and O&M Cost Sharing Principles

Construction Cost: Subsidy, Local Bond, User Charge

<u>O&M Cost</u> : User Charge, Public Sector Cost Burden

II. NECESSARY CONSIDERATION for CSS

- **II-1. Project Planning**
 - II-1-1. Comprehensive Basin-wide Planning Basic Concept for CSS
 - II-1-2. Concept of Cost Comparison between Off-site and On-site Design Criteria for Selection of Off-site and On-site System
 - II-1-3. Prefectural Plan for Appropriate Wastewater treatment Fundamental Plan for CSS Based on II-1-1 & II-1-2
- II-1-4. Formulation of Project Plan

 Location and Capacity of Sanitation Systems considering
 several aspects (in Japan formulated in the Sewerage Law)
- **II-1-5. Technology Options**

Technology Evaluation and Establishment of Design Manuals

Objectives of CSS; City Sanitation Strategy

- (1) Improvement of Living Conditions
- (2) Improvement of Public Health
- (3) Preservation of Water Quality in Public Water Bodies

II. NECESSARY CONSIDERATION for CSS

- **II-2. Operation and Maintenance**
- II-2-1. Institutional and Management Arrangement s (HRD, CD)

Role of Central Government and Municipalities,

Project Implementation Organization,

Private Sector Participation,

Human Resource Development: OJT, Training Program

Capacity Development (JS Training Center)

Research and Technology Development (JS R&D Division)

Technical Support to Middle-Small Scale Municipalities

II-2-2. Financial System for Sanitation (WTP, Public Awareness)

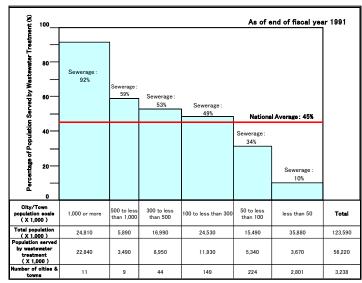
Establishment of Construction and O&M Cost Sharing Principles

Construction Cost: Subsidy, Local Bond, <u>User Charge</u>

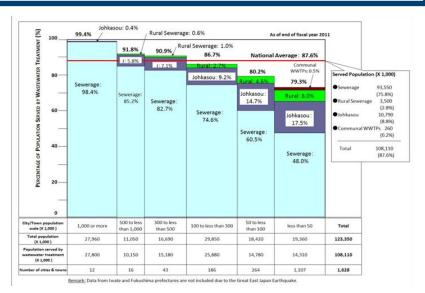
O&M Cost : <u>User Charge</u>, Public Sector Cost Burden

Willingness to pay greatly depends on how citizens are aware of and evaluate the benefits of sanitation systems

Necessary Viewpoints for Public Relation, Public Education


II. NECESSARY CONSIDERATION for CSS

II-2. Operation and Maintenance


II-2-3. Management of Sanitation Systems

- Appropriate cost sharing between public and private finance resources
- Long-term basis forecast of income and expenditures
- Appropriate economic management
- <u>Disclosure of management information to the citizens</u>

as tax payers and users who bear user charge

CONCLUSION; <u>SOLUTION</u> for City Sanitation

I. BASIC FRAMEWORK for CSS

- I-1. Legal System for Sanitation Systems
- I-2. Technology Options for Drainage and Treatment of Wastewater
- I-3. Institutional and Management Arrangements
- I-4. Financial System for Sewerage Systems

II. NECESSARY CONSIDERATION for CSS

II-1. Project Planning

- II-1-1. Comprehensive Basin-wide Planning
- II-1-2. Concept of Cost Comparison between Off-site and On-site
- II-1-3. Prefectural Plan for Appropriate Wastewater Treatment
- II-1-4. Formulation of Project Plan
- II-1-5. Technology Options; Technology Evaluation and Design Manual

II-2. Operation and Maintenance

- II-2-1. Institutional and Management Arrangement s
 (Human Resource Development, Capacity Development, R&D)
- II-2-2. Financial System for Sanitation
 (Willingness To Pay, Public Awareness, Public Relation)
- II-2-3. Management of Sanitation Systems



The Japan Sanitation Consortium (JSC) was launched on 16 October 2009

JSC Objectives

- Promote access to sanitation and sustainable improvement in the Asia-Pacific region
- Promote sanitation policies, legal and institutional frameworks, and financing strategies
- Develop human resource capacity and sanitation and hygiene awareness

Thank you for your attention

JSC MEMBER ORGANIZATIONS

OFF-SITE SANITATION

- Sewerage Business
 Management Centre
- Japan Sewage Works Association
- 3. Japan Sewage Works Agency

ON-SITE SANITATION

4. Japan Environmental Sanitation Center

5. Japan Education Center of Environmental Sanitation

